Specialist Methods (Year 11)

(Polynomials and Equations)

Practice Test \#3

1. Factor the following polynomials completely, and state all the zeroes.
(a) $2 x^{4}-x^{3}-x^{2}$
(b) $x^{6}-1$
2. (a) Show that if $P(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ is even, then $b=d=0$.
(b) Show that if $Q(x)=a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f$ is odd, then $b=d=f=0$.
3. Sketch graphs of the following polynomials, clearly indicating all intercepts with the axes:
(a) $y=(2-x)^{2}(5-x)$
(b) $\quad f(x)=-2 x^{2}+9 x-7$
4. Find the coordinates of the points where the graph of $y=p(x), p(x)=x^{4}-2 x^{2}+1$, crosses the x - and y axes, and hence sketch the graph.
5. (a) Find the quotient and remainder when $x^{4}-2 x^{3}+x^{2}-5 x+7$ is divided by $x^{2}+x-1$.
(b) Find \mathbf{a} and \mathbf{b} if $\mathrm{x}^{4}-2 \mathrm{x}^{3}+\mathrm{x} 2+\mathrm{ax}+\mathrm{b}$ is exactly divisible by $\mathrm{x}^{2}+\mathrm{x}-1$.
6. The polynomial $P(x)=x^{4}-2 x^{3}+a x+b$ has remainder 3 after division by $x-1$, and has remainder -5 after division by $x+1$. Find \mathbf{a} and \mathbf{b}.
7. The polynomial $P(x)$ is divided by $(x+4)(x-3)$.

Find the remainder, given that $P(-4)=11$ and $P(3)=-3$.
8. Factorize completely $P(x)=x^{4}+x^{3}-9 x^{2}+11 x-4$
9. When $x^{5}+3 x^{3}+a x+b$ is divided by $x^{2}-1$, the remainder is $2 x-7$. Find \mathbf{a} and \mathbf{b}.
10. (a) Show that the equation of the normal to the curve $\mathbf{x}^{2}=4 \mathbf{y}$ at the point $\left(2 t, t^{2}\right)$

$$
\begin{equation*}
\text { is } \mathbf{x}+\mathbf{t y} \mathbf{- 2 t}-\mathbf{t}^{3}=0 \tag{6+2}
\end{equation*}
$$

(b) If the normal passes through the point $(-2,5)$, find the value of \mathbf{t}.

